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Note 

A Collocation Method for Solving Laplace’s Equation 

In previous papers (Refs. [l, 2, 31) a least squares collocation method has 
been developed for solving Laplace’s equation for cylindrically symmetric systems, 
and the method has been used to give the potential distributions, focal lengths, 
and spherical aberration coefficients of electrostatic lenses of two and three 
apertures. The usual relaxation methods were found to be unsatisfactory for giving 
the potential distributions for these lenses, due to the singular behaviour of the 
fields at the aperture edges. In the present paper the collocation method is used 
to calculate the potential distribution for a single aperture, the analytic form of 
which is known. This enables the accuracy and convergence of the method to be 
assessed. 

1. THE LEAST SQUARES COLLOCATION METHOD 

Figure 1 represents an aperture of unit radius in an infinite thin flat conducting 
diaphragm of zero potential, with asymptotic fields to the left and right equal to 
0 and - 1, respectively. The potential distribution along the axis is known to be [4] 

$<O, z) = i + z (!j + + arctan z), 

where z is measured from the plane of the diaphragm, and the potential inside 
the aperture (in the plane of the diaphragm) is 

(b<r, 0) = $ (1 - r2)112. 

For the purposes of the following calculations, a cylinder of radius R (>l), 
coaxial with the axis of symmetry of the aperture, and having zero potential, 
has been added to the left of the aperture, and a similar cylinder has been added 
to the right of the aperture, but with a potential equal to z, as shown in the figure. 
The presence of these cylinders does not affect the potential distribution at large 
values of 1 z (. 
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The functions 

V, = fJ A, exp(+k,z) J&b+) 
n=1 

(3) 

and 

N 

5 = z + c & exp(--k,z) .&#w) (4) 
n=l 

satisfy Laplace’s equation to the left and right, respectively, of the aperture [5], 
and have the correct asymptotic values at z = f co. They also satisfy the boundary 
conditions at r = R if the values of k, are chosen to be the successive solutions of 
the equation 

Jo(k,R) = 0 (5) 

E, 

FIG. 1. 

If the coefficients A,, and B,, can be chosen so that the boundary conditions at the 
plane of the diaphragm are reasonably well satisfied, then the potentials VI and V,, 
should be reasonably good solutions for this problem. 

The condition that VI and Vu should be equal at z = 0 is easily satisfied, since 
the orthogonality relationship for the Bessel functions gives A, = B, , thus 
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reducing the number of unknown coefficients to N. Because the potential of the 
diaphragm is zero, one also has that 

f A,J,(k,r) = sy(r) = 0 
n4 

for values of r from 1 to R. 
A further condition is that the field in the z direction should be continuous 

across the aperture, which gives 

F A&J&r) - 0.5 = SE(r) = 0 

for values of r from 0 to 1. Equations (6) and (7) are therefore the conditions 
which must be used to give the coefficients A, . 

The method of collocation consists of satisfying Eqs. (6) and (7) exactly at N 
different values of r between 0 and R, to give the N coefficients A, . This procedure 
did not result in convergence as the number N was increased, but instead gave 
rise to violently oscillating values for the coefficients A, . For values of r between 
those chosen, Eqs. (6) and (7) were poorly satisfied. In order to overcome this 
difficulty a “least squares” method was developed. This consisted in forming the 
quantity 

S = i sE(r)2 + f sy(r)2 

and then obtaining N equations from the conditions 

as 0 --= 
aA, . 

The total number, M, of collocation points must be greater than N. 
The set of linear equations (9) are of the form 

bA = c (10) 

where b is a symmetric positive definite N x N matrix, and A is the column 
vector of coefficients A,, . This equation was solved either by Gaussian elimination 
or by Choleski’s method [6]. No difficulties were experienced in solving these 
equations, even when the matrices were of order 210 [2], provided that the elements 
of b and c were all reduced to the order of unity by multiplying A, b, and c by 
suitably chosen matrices. All the computational work was done on the Atlas 
computer at Manchester University. The total computing time required to find 
the potential distributions, when N = 70 and M = 280, was 126 sets. 
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2. RESULTS FOR THE SINGLE APERTURE 

In all cases the coefficients A, were calculated, and then these were used to 
calculate the potential distribution along the axis and the potential distribution 
in the plane of the aperture, which were then compared with the correct values 
given by Eqs. (1) and (2), respectively. These results can be further condensed to 
three numbers, viz., (i) e, , the error in &O, 0); (ii) eaxial , the root-mean-square 
error in $(O, z) (between z = f2); (iii) eaDerture , the root-mean-square error in 
$(r, 0) (from r = 0 to 1). 

The electric field is discontinuous and singular at the edge of the aperture. 
Because of this the most accurate results were obtained by concentrating the 
collocation points near the edge. In practice, M/2 points were equidistantly spaced 
between 314 and 514, M/4 were equidistantly spaced between 0 and 314, and the 
remaining M/4 were equidistantly spaced between 514 and R. 

To investigate the effect of varying R, the potential distributions were calculated 
for various values of R, with N and M fixed at 70 and 280 respectively. The results 
are summarized in Fig. 2. For values of R smaller than those shown, e,, becomes 
large and negative. In all the following calculations, R was given the value three. 

Figure 3 shows the effect of varying the number of coefficients in the potential 
expansions, The number of collocation points is taken to be either 280 or 4N, 

‘APERTURE 

N=70 
M=280 

FIG. 2. 



COLLOCATION METHOD 531 

as shown. For both e, and eaXial the variation with N is approximately of the form 

e cc N-“, (11) 

where x = 1 for the root-mean-square axial potential error, and x = 0.75 for 
the error in the potential of the midpoint. The lines on the figure show these 
dependences. 

The accuracy of the potential distributions depends, of course, on the accuracy 
with which the boundary conditions are satisfied. Conversely, one might hope 
that the accuracy with which the boundary conditions are satisfied may be used 
to estimate the accuracy of the potential distributions. This was the approach 
used in the earlier calculations of two and three-aperture lenses [I, 21. In the 
present case the boundary conditions are given by Eqs. (6) and (7). Let dV and de 
be the root-mean-square values of sy and SE, respectively (these values being 

30 100 200 
N+ 

FIG. 3. 

computed by taking a large number of values of r which are in general different 
from these of the collocation points). In general dV was found to be approximately 
equal to 4eaxiai . As found in Ref. [l] and [2], the major contribution to dV comes 
from values of r near to one. 

In general dE is larger than d, (the opposite was the case in two and three- 
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aperture lenses), and dE decreases more slowly than does d, with increasing N. 
It seems that dE is a less reliable guide than d, to the accuracy of the potential 
distributions. For the case in which N = 70, A4 = 280, and R = 3, the actual 
values of dv , dE , e, , and eaxial are 0.011, 0.015, 0.005, and 0.003 respectively. 

The above remarks about the boundary conditions do not apply when the 
number of collocation points is less than about twice the number of coefficients A, . 

Perhaps most attention should be paid to the accuracy of the axial potential 
distribution, eaxial , since it is this which determines the accuracy of calculated 
lens parameters. In the calculation of the axial potential distributions of lenses of 
more complicated geometry, it would seem to be a reasonable extrapolation from 
the results of the present work that the number of collocation points should be 
larger than twice the number of parameters, that the root-mean-square error in 
the axial potential should be of the same order as the root-mean-square error in 
fitting the potential boundary conditions, and that this error is approximately 
inversely proportional to the number of parameters. 
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